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ABSTRACT: The use of multivariate analyses to determine the nature and magnitude of genetic
divergence, to identify potential parents for hybridisation, to examine the variation explained by each trait
and to estimate the relative contribution of different traits governing total variability is a common practice
in plant breeding activities. A study was conducted with set of 46 rice genotypes at Banaras Hindu
University during Kharif-2018 under drought stress. A significant variation has been explained by the 46
genotypes for all the traits included in the study and further analysis using  D2 statistic revealed
considerable amount of diversity in the material and grouped them into five clusters based on their
performance with cluster I being the largest with 26 genotypes consisting mostly of high yielding rice
varieties with poor performance under drought stress. The maximum inter cluster distance was observed
between clusters II and III followed by clusters I and V indicating wider genetic diversity between these
clusters, and hence, crosses involving parents belonging to these clusters are likely to produce wide
variability and transgressive segregants with high heterotic effects. Principal Component Analysis revealed
first six Principal Components (PCs) having eigen value more than 1, contributing 75.30% of total
variance. PC1 and PC2 accounted for 23.49% and 20.09% of total variance respectively with different
traits performing exceptionally well. Hence, trait improvement will be more effective if selection is made
based on this trait combinations that contributes to substantial variance. The remaining variability was
consolidated in the remaining components with different traits in each component. A similarity in the
grouping can be observed in both the multivariate techniques and the most diverse genotypes obtained in
the study can be used for the development of high yielding drought tolerant rice cultivars.
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INTRODUCTION

Rice (Oryza sativa L.) is an important staple food that
constitutes a dominant portion of a world standard diet
(Ashkani et al., 2015). Among the rice growing
countries in the world, India has the largest area under
rice cultivation and ranks second in production next to
China. Rice occupies a pivotal place in Indian
agriculture and has been grown under diverse
ecological conditions. It gets exposed to various abiotic
and biotic stresses viz., drought, flood, salinity,
alkalinity, insect pests and pathogens. These stresses
directly cause great loss in the production and
productivity of rice. Among the various abiotic stresses
affecting rice, drought is the toughest constraint,
affecting nearly a third of the total rice area in Asia and
causing significant economic losses (Kasyap and
Yadav, 2020). Reproductive stage of the crop is most

vulnerable to drought stress among all the stages.
Approximately 42 million hectares of rice is subjected
to occasional or frequent drought stress in Asia,
resulting in yield losses (Venuprasad et al., 2009). As it
has been estimated that the world will have to produce
60% more rice by 2030 than what it produced in 1995
(Khush, 2005), an increase in the production of rice
plays a very important role in food security and poverty
alleviation.

A vast amount of germplasm is available in rice
that still needs to be exploited and can be used for
screening by various methods, including
morphological, physiological, biochemical and
molecular to attain some individuals with better
performance. This screening also provides the
knowledge of the extent and pattern of diversity and
interrelationship between the germplasm accessions in
the crop (Bailey-Serres et al., 2019). It further helps in
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grouping of genotypes based on their performance and
specific traits which further can be used for trait
specific breeding programs like abiotic or biotic stress
breeding.

The germplasm available in any crop species
provides the scope of wide variability and is a valuable
source of the base population (Jovovic et al., 2020).
Information on the genetic diversity and distance
among the breeding lines is important for determining
breeding strategies, classifying the parental lines and
predicting future hybrid performance. By and large,
crossings between parents with the greatest genetic
divergence are the most responsive to genetic
improvement. Genetic distance estimates for population
grouping can be estimated by different methods and one
of them is to apply multivariate analysis. Various
multivariate statistical tools include Mahalanobis D2

statistic, Principal Component Analysis (PCA), Cluster
analysis and discriminant function analysis (Oyelola,
2004; Henderson and Seaby, 2008). Among these,
Mahalanobis D2 statistics is widely used and a powerful
tool to analyse the relative contribution of various yield
components to total divergence and also classifies
different genotypes into suitable clusters based on their
genetic distances (D2 values) (Awan et al., 2015). This
study estimates the relative contribution of several
components at the intra- and inter-cluster levels, and
genotypes derived from widely divergent clusters are
likely to form heterotic combinations, with a large
range of variability expected in segregating generations.
The other technique viz., Principal component analysis

(PCA) is a procedure which is commonly used for
compression, reduction and transformation of data. It
transforms a number of possibly correlated variables
into a smaller number of uncorrelated variables called
principal components (Jolliffe et al., 2016). This
technique assists in identification of traits that help in
distinguishing selected genotypes based on similarities
in one or more traits and classify the genotypes into
separate groups. With this background, the present
study was conducted to group 46 rice genotypes of rice
based on their distances and behaviour under drought
stress.

MATERIAL AND METHODS

The present investigation was carried out at
Agricultural Research Farm, Banaras Hindu University,
Varanasi during Kharif 2018 with a set of 46 rice
genotypes consisting of local drought donors, advanced
varietal lines for reproductive stage drought tolerance,
high yielding drought susceptible varieties and high
yield drought tolerant varieties. The genotypes used in
the present study were obtained from IRRI-South Asia
Hub, Hyderabad (Table 1). These genotypes were
evaluated in an Alpha Lattice Design with three
replications. All the recommended package of practices
were followed to grow the crop until harvest except
irrigation, so as to provide proper drought stress.
Appropriate measures were taken to impose
reproductive stage drought stress at peak tillering stage.

Table 1: List of rice genotypes used for diversity analysis.

Sr. No. Genotype Sr. No. Genotype Sr. No. Genotype
1. CRDhan801 17. CGZR-1 33. IR106516-1-2-2-2
2. Aus314 18. NDR359 34. Swarna
3. HUR105 19. HUR4-3 35. IR90257-B-577-2-1-3-B
4. JagliBoro 20. HUR5-2 36. IR93827-29-1-1-4
5. Puttige 21. Pantdhan12 37. IR95817-5-1-1-2
6. IR64 22. PusaBasmati 38. MTU1010
7. Genit 23. Kalanamak 39. IR13L378
8. Chiayiwei-Ko 24. Pusa11-21 40. IR108199-24-32-1-1-B
9. DRRDhan44 25. SambaMahsuri 41. IRRI123

10. IR62266-42-6-2 26. IR103587-22-5-5-B 42. IR80310-12-B-1-3-B
11. E2040 27. TRP-20-7-1-B-2-B 43. Sahabagidhan
12. HUBR2-1 28. IR95785-31-2-1-2 44. Aus301
13. N22 29. IR107891-B-B-90-3-1 45. BakTulsi
14. Vandana 30. IR127363-76-1 46. Perunel
15. HUR3022 31. IR114155
16. Sarjoo-52 32. IR106312-50-1-1-1

Observations recorded: The data was collected for a
total of 17 traits consisting of 13 yield traits viz., days to
50% flowering, days to maturity, plant height, effective
tillers per plant, panicle length, spikelets per panicle,
grains per panicle, spikelet fertility %, 1000-Grain
weight, kernel L/B ratio, grain yield per plant, biomass,
harvest Index and 4 drought related traits viz., SPAD
value, canopy temperature, stomatal conductance and
proline content for all the 46 rice genotypes under
severe drought stress condition. For most of the traits,
the data was collected on five randomly selected plants
in each replication, whereas,

days to 50% flowering, days to maturity and canopy
temperature were recorded on plot basis.
Statistical Analysis: The quantitative trait mean values
computed based on data of five randomly tagged plants
in each genotype were used for statistical analysis.
Analysis of variance (ANOVA) was performed to
partition the total variation into its sources following
Alpha lattice design as given by Williams and
Patterson, 1976 using R software. Genetic diversity
analysis was done using Mahalanobis’s D2 statistic
(1936). The grouping of genotypes into different
clusters was done using Tocher’s method as described
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by Rao, 1952. Genetic divergence analysis was done
using INDOSTAT version 8.1. PCA reduces the
dimensions of a multivariate data to a few principal
axes, generates an Eigen vector for each axis and
produces component scores for the characters. PCA for
the 46 genotypes for 17 traits was done using
factroextra package of R software.

RESULTS AND DISCUSSION

ANOVA: The ANOVA revealed that the genotypes
differed significantly for all the 17 traits included in the
study, indicating the existence of sufficient amount of
variability among the genotypes taken for the study
(Table 2). However, the variation among blocks within
the replication was insignificant. Significant differences
among the genotypes were earlier reported by Ranjith et
al., (2018), Kumari et al., (2019) and Singh et al.,
(2020).

Mahalanobis's D2 analysis: Assessment of genetic
diversity is an essential prerequisite for any crop
improvement program (Mehmood et al., 2021). The
models of multivariate analysis like Mahalanobis’ D2

statistic provides as a useful statistical tool for
measuring the genetic diversity in a given population
with respect to characters that were considered together.
It also gives a quantitative measurement of divergence
among genotypes and also define the relative
contribution of different characters towards total
divergence (Khadakabhavi et al., 2014; Kumar et al.,
2017; Mounika and Lal, 2018). Many researchers have
utilized Mahalanobis's D2 statistic for multivariate
analysis, such as degree of divergence studies in crop
germplasm collections (Akhtar et al., 2012, Kumar et
al., 2014, Bhati et al., 2015; Dey et al., 2018).

Table 2: Analysis of variance of 46 rice genotypes for 17 traits.

Source of Variation

Traits

Replication
(df=2)

Genotype
(df=45)

Block(rep)
(df=3)

Residuals
(df=87)

Days to 50 flowering 0.79 240.56*** 0.55 1.51
Days to maturity 1.37 260.46*** 3.35 1.55

Plant height 25.89 968.82*** 42.64 19.78
Effective tillers per plant 2.43* 4.79*** 1.27 0.43

Panicle length 1.64 18.55*** 0.65 1.95
Spikelets per panicle 534.9 4490.0*** 135.2 274.3
Grains per panicle 337.6 3619.8*** 119.9 276.6
Spikelet fertility % 3.81 308.87*** 5.51 23.74

Test weight 0.10 27.22*** 0.17 0.12
Kernel L/B ratio 0.02 1.08*** 0.02 0.03

Grain yield per plant 1.57 78.98*** 3.58 2.92
Biomass 45.14 383.25*** 18.51 19.00

Harvest Index 123.21* 469.19*** 21.31 34.49
SPAD value 4.03 41.99*** 11.88 5.88

Canopy Temperature 1.30* 4.22*** 0.59 0.41
Proline content 0.12 17.35*** 0.03 0.11

Stomatal conductance 5316.0*** 47681.00*** 72.00 59.00

*, ** , *** Significant at 0.05, 0.01 and 0.001 percent probability levels respectively

Grouping of the genotypes: The magnitude of values
suggested that there is considerable variability in the
material studied, which led to genetic diversity and
grouped the 46 genotypes into five clusters based on D2

values using Tocher’s method. A trait based
classification can be observed in the pattern of
grouping. Cluster I is the largest with 26 genotypes
comprising mostly of high yielding varieties of rice viz.,
MTU 1010, IR 64, Sarjoo-52, Pantdhan 12 etc and
advanced varietal lines for drought tolerance which

performed moderately under drought stress followed by
cluster II with 10 genotypes which are mostly drought
tolerant varieties of rice like DRR Dhan 44,
Sahabagidhan etc. and other advanced varietal lines for
drought tolerance and cluster III with 8 genotypes
comprising of high yielding varieties with very poor
performance under drought stress. Clusters IV and V
are solitary clusters with single genotype viz., IR62266-
42-6-2 and Swarna respectively (Table 3).

Table 3: Distribution of 46 rice genotypes into 5 clusters.

Clusters No. of
genotypes

Name of the genotypes

Cluster I 26

MTU1010, IR13L378, IR64, IR114155, IR106312-50-1-1-1, IRRI123, IR127363-76-
1, HUR4-3, IR103587-22-5-5-B, Aus301, BakTulsi, Chiayiwei-Ko, NDR359,

IR95817-5-1-1-2, Sarjoo-52, Pantdhan12, TRP-20-7-1-B-2-B, HUBR2-1, HUR5-2,
IR107891-B-B-90-3-1, Pusa11-21, JagliBoro, Vandana, Aus314, IR95785-31-2-1-2,

IR93827-29-1-1-4

Cluster I I 10
DRRDhan44, IR108199-24-32-1-1-B, IR90257-B-577-2-1-3-B, IR80310-12-B-1-3-

B, CGZR-1, IR106516-1-2-2-2, Sahabagidhan, HUR3022, CRDhan801, N22
Cluster III 8 Puttige, Perunel, Genit, Kalanamak, PusaBasmati, SambaMahsuri, HUR105, E2040
Cluster IV 1 IR62266-42-6-2
Cluster V 1 Swarna



Korada  et al., Biological Forum – An International Journal 13(4): 644-652(2021) 647

The local drought donors were distributed in the first
three clusters based on their performance. Similar
pattern of grouping of genotypes into different clusters
based on D2 values using tochers method were reported
by Kamlesh et al., (2015), Dey et al., (2018), Singh et
al., (2019), Singh et al., (2020), where they classified
40, 12, 50, 29 genotypes into 8, 4, 8 and 6 clusters
respectively. A dendrogram representing the
relationship among the 46 rice genotypes is presented in
Fig. 1.
Intra and Inter-cluster genetic distances (D2 values):
The intra cluster distances in the 5 clusters varied from

0 in clusters IV and V to a maximum distance of 38.30
in cluster III followed by 30.43 in cluster II and 24.09
in cluster I, indicating the presence of diverse
genotypes within these clusters and hybridization
between the genotypes within this cluster would yield
considerable heterosis. The highest inter-cluster
distance was found between clusters II and III (54.52),
followed by clusters I and V (52.26), clusters IV and V
(50.83) and clusters III and IV (50.77). The average
genetic distances between the five clusters are well
presented in Table 4.

Table 4: Intra and Inter cluster D2 values among the five clusters.

Cluster I Cluster II Cluster III Cluster IV Cluster V
Cluster I 24.09 44.10 35.03 37.82 52.26
Cluster II 30.43 54.52 47.75 41.13
Cluster III 38.30 50.77 54.07
Cluster IV 0.00 50.83
Cluster V 0.00

General notion exists that the larger is the divergence
between the parental genotypes, the higher will be the
heterosis in crosses (Falconer, 1964). Therefore, it
would be desirable to attempt crosses between
genotypes belonging to distant clusters for getting
highly heterotic crosses which are likely to yield a wide
range of segregants on which selection can be
practiced. Cluster II with 10 genotypes having drought
tolerant high yielding varieties of rice and cluster III
with 8 genotypes comprising of high yielding but
susceptible to drought showed maximum inter cluster
distance and are the most divergent groups and thus it is
desirable to select genotypes from these clusters as
parents in recombination breeding programs.
Hybridization between the genotypes of these clusters
would yield in recombinants with higher yield along
with drought tolerance.

However, lowest inter-cluster distance was observed
between clusters I and III followed by clusters I and IV
suggesting similarities among the genotypes in these
clusters for most of the traits. Similar findings were
reported by Priyanka et al., (2015), Ashok et al.,
(2017), Behera et al., (2018), Srinivas, (2018) and
Pathak et al., (2020). Mukul et al., (2019), have
classified 100 rice genotypes into 11 clusters and the
highest inter-cluster distance was recorded between
clusters X and XI (458.41), whereas, maximum intra-
cluster distance was observed in cluster IX (63.20) and
cluster 1 recorded the lowest intra-cluster distance
(13.46) suggesting a closer relationship and low degree
of diversity among the genotypes of this cluster.
Cluster means: The average performance of all
genotypes in a cluster is represented by the cluster
means and shows the mean values for different traits for
different clusters (Table 5).

Table 5: Cluster mean values estimated by Tocher’s method from 46 rice genotypes and percent contribution
of each character towards total divergence.

Cluster

Characters
Cluster I Cluster II Cluster

III
Cluster

IV Cluster V
Times
ranked

1st
% Contribution

Days 50% flowering 91.67 93.33 99.17 92.67 122.67 45 3.35
Days to maturity 119.31 123.37 128.42 123.67 147.33 103 5.95

Plant height 102.38 100.66 121.24 105.73 91.4 28 2.71

Effective tillers per plant 6.99 6.93 6.5 4.33 7.67
4

7.00

Panicle length 24.46 24.4 23.22 24.41 24.61 3 3.10
Spikelets per panicle 133.62 166.33 131.75 85.67 220.33 2 0.19
Grains per panicle 111.87 146.2 97.21 77.33 171 7 0.68
Spikelet fertility % 83.86 87.7 76.3 89.99 77.67 0 0.00

Test weight 24.09 23.36 20.96 34.13 24.08 168 16.23
Kernel L/B ratio 3.25 3.19 2.97 2.85 2.88 6 1.48

Grain yield per plant 15.21 20.07 11.55 13.67 22.78 8 4.58
Biomass 36.96 41.95 36.45 25.23 43.17 4 0.39

Harvest Index 43.67 48.95 32.28 54.37 53.28 2 0.19
SPAD value 37.81 37.24 34.25 37.97 38.3 0 0.00

Canopy Temperature 32.01 31.74 33.08 32.57 32.43 0 0.00
Proline content 10.89 13.16 11.76 9.64 13.88 145 14.01

Stomatal conductance 473.54 713.37 425.95 522.21 655.32 499 40.14



Korada  et al., Biological Forum – An International Journal 13(4): 644-652(2021) 648

The highest mean value for 10 traits viz., days to 50%
flowering, days to maturity, effective tillers per plant,
panicle length, spikelets per panicle, grains per panicle,
grain yield per plant, harvest index, SPAD value,
proline content were seen in cluster V, meaning the
performance for most of the traits in this cluster is
good. Cluster III had the highest average values for
plant height and canopy temperature which is a
negative aspect in context of rice and cannot be
considered for selection at least for these traits,
whereas, cluster IV displayed the highest mean values
for spikelet fertility %, test weight and biomass which
is a positive aspect in relation to yield and can be
considered during selection. In the case of kernel L/B
ratio, the highest mean value was seen in cluster I and
cluster II had the highest mean for stomatal
conductance and can be considered for selection of
these traits in the mentioned clusters. Similar reports of
cluster mean for various traits and use of genotypes of
that particular cluster for specific traits improvement
was earlier reported in rice by Singh et al., (2019);
Singh et al., (2020) and Pathak et al., (2020) where they
grouped 50, 29 and 29 genotypes into 8, 6 and 6
clusters respectively.
Percent contribution of each character towards total
divergence: The more is the variation present in a
particular trait, the more it contributes to total
divergence among the genotypes. Among the 17
characters included in the study, stomatal conductance
(40.14%) contributed the most to total divergence,
followed by test weight (16.23%), proline content
(14.01%), effective tillers per plant (7.00%), days to
maturity (5.95%), grain yield per plant (4.58%), days to
50% flowering (3.35%), panicle length (3.10%), Plant
height (2.71%), grains per panicle (0.68%), biomass
(0.39%), harvest index (0.19%) and spikelets per
panicle (0.19%). The remaining three traits viz., spikelet
fertility %, SPAD value and canopy temperature do not

have any contribution towards total divergence. The
contribution of each character towards total divergence
is presented in Table 5. The characters showing major
contributions towards genetic divergence should be
given more consideration in crop improvement
programs. The results were in agreement with the
findings of Subudhi et al., (2008) for plant height, days
to 50% flowering and test weight. Kumari et al., (2019)
for effective tillers per plant and test weight. Priyanka
(2015); Ranjith et al., (2018) and Manohara et al.,
(2019) reported similar results in explaining the
contribution of each trait towards total divergence.
Principal Component analysis (PCA): To find out
independent impact of all the traits under study, PCA
was conducted. Principal Components (PCs) are
orthogonal, independent and explain the variation that
is not explained by others (Mohammadi and Prasanna,
2003; Woredo et al., 2014). In the current study, the
first six PCs with Eigen values > 1 contributed 75.30 %
variability existing in the rice varieties for the 17
characters indicates that the identified traits within the
axes exhibited great influence on the phenotype of
germplasm lines. PCA provided eigenvalues and
percent variation for 17 principal component axes in 46
rice genotypes (Table 6). Remaining components with
Eigen values < 1 contributed 24.97 % variability. PC 1
with Eigen value 3.99 contributed 23.49 % of total
variability. PC 2 and PC 3 with Eigen values of 3.41
and 1.65 contributed 20.09 % and 9.75% of total
variability respectively. A Scree plot illustrating the
variance explained by the 17 PCs was shown in Fig. 2.
It can be observed that maximum variation was present
in first 2 PCs and hence, selection of genotypes from
these PCs will be useful. Similarly, Kasyap and Yadav,
2020 have done PCA and revealed that first five
principal components addressed 80.03 (%) of the total
variability with PC1, PC2 and PC3 explaining 33.48 %,
13.75% and 11.75% respectively.

Table 6: Eigenvalue, Percent variance and Cumulative percent variance explained by 17 principal
components.

PC Eigenvalue Percent Variance Cumulative percent
variance

PCI 3.993528657 23.49134504 23.49134504
PCII 3.416918448 20.09952028 43.59086532
PCIII 1.658508026 9.755929567 53.34679489
PCIV 1.510997622 8.888221307 62.2350162
PCV 1.153410342 6.78476672 69.01978292
PCVI 1.068507009 6.285335344 75.30511826
PCVII 0.885614032 5.209494308 80.51461257
PCVIII 0.789475642 4.643974366 85.15858694
PCIX 0.598433801 3.52019883 88.67878577
PCX 0.558659448 3.286232046 91.96501781
PCXI 0.447388243 2.631695549 94.59671336
PCXII 0.432773148 2.545724402 97.14243776
PCXIII 0.231713738 1.363021988 98.50545975
PCXIV 0.202274599 1.189850582 99.69531033
PCXV 0.03536022 0.208001296 99.90331163
PCXVI 0.01446614 0.085094939 99.98840657
PCXVII 0.001970883 0.011593432 100
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Fig. 2. Scree plot representing the percent variance explained by each Principal Component (PC).

Factor loading of different characters: The
contribution of all the characters in the first six PCs to
the total variability was shown in Table 7. PC1 has
high component loading for grains per panicle (19.30),
spikelets per panicle (19.02), grain yield per plant
(18.14), biomass (6.44), days to 50% flowering (6.32),
stomatal conductance (6.12) and others that accounted
for 23.49% of total variation. PC2 had high component
loadings for spikelet fertility % (19.65), harvest index
(17.21), days to maturity (13.60), canopy temperature
(9.24), test weight (7.27) etc. that accounted 20.09% of
total variation. The contribution of variables to PC1 and
PC2 was represented in Fig. 3. It indicates that a proper
hybridization program can be formulated by selecting

the genotypes from the first 2 Principal Components as
they have variables contributing to higher yields and
contributed maximum toward diversity with maximum
eigenvalues. Similar results of factor loading in various
PCs were reposted by Nachimuthu et al,. (2014);
Sharma et al., (2014); Mahendran et al., (2015); Sanyal
et al., (2016) and Gour et al., (2017).
The PCA scores for 80 genotypes in the first 2 principal
components were estimated and were considered from
which the squared distances of each genotype were
derived and are plotted on a biplot. The distribution of
genotypes based on their diversity can be observed in
the 4 quadrants in various colours (Fig. 4).

Table 7: Factor loading of different characters (unrotated) for the first 6 PCs (Eigen value ˃ 1).

PC1 PCII PCIII PCIV PCV PCVI
Eigenvalue 3.994 3.417 1.659 1.511 1.153 1.069

Percent variance 23.491 20.100 9.756 8.888 6.785 6.285
Cumulative percent variance 23.491 43.591 53.347 62.235 69.020 75.305

Days to 50% flowering 6.328 1.085 8.613 3.247 7.785 10.222
Days to maturity 4.778 13.609 3.792 3.500 0.304 13.312

Plant height 1.105 0.871 27.174 7.281 6.255 4.894
Effective tillers per plant 0.003 0.071 2.029 10.210 28.498 18.702

Panicle length 4.399 0.000 8.940 19.263 12.207 0.530
Spikelets per panicle 19.029 1.150 0.022 0.210 4.228 0.660
Grains per panicle 19.302 1.320 0.165 0.009 4.134 2.135
Spikelet fertility % 0.188 19.654 0.537 0.654 0.090 0.706

Test weight 0.503 7.727 0.223 7.368 0.057 27.052
Kernel L/B ratio 0.642 5.233 30.755 0.348 0.348 0.096

Grain yield per plant 18.141 2.259 2.600 0.008 1.305 0.188
Biomass 6.440 6.672 0.658 0.153 11.049 9.154

Harvest Index 4.385 17.215 0.801 1.564 2.866 3.474
SPAD value 4.802 3.649 6.128 0.955 6.687 2.620

Canopy Temperature 1.920 9.246 2.710 2.873 12.802 3.119
Proline content 1.909 0.187 2.135 36.645 0.533 0.090

Stomatal conductance 6.125 0.287 2.716 5.712 8.636 3.046
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DFF: Days to 50% flowering; DM: Days to maturity; PH: Plant height; ETPP: Effective tillers per plant; PL: Panicle length; SPP:
Spikelets per panicle; GPP: Grains per panicle, SF: Spikelet fertility %; TW: 1000-Grain weight; L:B: Kernel L/B ratio; GYPP:
Grain yield per plant; BM: Biomass; HI: Harvest Index; SPAD: SPAD value; CT: Canopy temperature; SC: Stomatal
conductance; PC: Proline content.

Fig. 3. PCA graph of the 17 traits for first two principal components.

The genotypes viz., Samba Mahsuri, Pusa Basmati,
Swarna, E2040, CR Dhan 801, DRR Dhan 44,
Sahabagidhan etc. which are placed away from the
centre are more diverse than the genotypes that are
located around the origin and the crossing between
them is expected to produce desirable transgressive
segregants. As we can see from Fig. 4, the drought
tolerant varieties of rice viz., CR Dhan 801, DRR Dhan
44, Sahabagidhan and donors like Jagli Boro, Bak
Tulsi, Aus 314, E2040 etc are placed far from the
drought susceptible varieties viz., Samba Mahsuri, Pusa
Basmati, HUBR 2-1 etc. According to Raji (2002), a
criterion was chosen to govern the limit for the
coefficients of the proper vectors. Based on this, vector
coefficient ˃ 0.3 are having large effect and can be

considered important, while vector coefficients ˂ 0.3
were considered not to have important effect on the
overall variation. Based on this concept, the genotypes
distributed away from the origin and having values
greater than 0.3 can be considered diverse and can be
used in hybridization programs to obtain recombinants
that can perform well under drought stress. Woredo et
al., (2014) reported that, based on the PCA scores, the
distribution pattern of 24 rice genotypes with 17 agro-
morphological characters and suggested genotypes
based on their diversity and genetic distance for further
crossing programs. Similar use of PCA for data
compression and interpretation was made by Hossain et
al., (2016); Pathak et al., (2018) and Ranjith et al.,
(2019).

Fig. 4. PCA Biplot representing the distribution of 46 rice genotypes on the first 2 Principal Component axes.
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The distribution pattern of the genotypes on the biplot
can be correlated with the grouping obtained by
Tochers method using Mahalanobis D2 values. The
distribution based on drought tolerance ability and their
genetic distances can be observed in both the methods.

CONCLUSION

Diverse parents are expected to yield higher frequency
of heterotic hybrids in addition to generating a broad
spectrum of variability in segregating generations.
Multivariate analysis like D2 and PCA based grouping
would help in identification of diverse parents that can
be used for future breeding programs. Based on these
analyses, in the present study, genotypes viz., CR Dhan
801, DRR Dhan 44, Sahabagidhan which are high
yielders and drought tolerant can be crossed with
drought susceptible varieties like Samba Mahsuri,
Swarna, Pusa Basmati etc. which would help in
development of heterotic hybrids for drought prone
areas and selections can be made for recombinants that
perform well in advanced segregating generations under
drought stress.
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